Shape Preserving Piecewise Rational Interpolation
نویسندگان
چکیده
منابع مشابه
Positivity-Preserving Piecewise Rational Cubic Interpolation
A piecewise rational cubic spline [5] has been used to visualize the positive data in its natural form. The spline representation is interpolatory and applicable to the scalar valued data. The shape parameters in the description of a rational cubic have been constrained in such a way that they preserve the shape of the positive data in the view of positive curve. As far as visual smoothness is ...
متن کاملMonotonicity-Preserving Piecewise Rational Cubic Interpolation
An explicit representation of a C1 piecewise rational cubic spline has been developed, which can produce a monotonic interpolant to given monotonic data. The explicit representation is easily constructed, and numerical experiments indicate that the method produces visually pleasing curves. Furthermore, an error analysis of the interpolant is given.
متن کاملScientific Data Visualization with Shape Preserving C Rational Cubic Interpolation
This paper deals with the shape preserving C rational cubic interpolation. The developed rational cubic interpolating function has only one free parameter. The approximation order of rational cubic function is investigated and range of optimal error constant is determined. Moreover, positive, constrained and monotone data preserving schemes are developed. 2000 Mathematics Subject Classification...
متن کاملInteractive shape preserving interpolation by curvature continuous rational cubic splines
A scheme is described for interactively modifying the shape of convexity preserving planar interpolating curves. An initial curve is obtained by patching together rational cubic and straight line segments. This scheme has, in general, geometric continuity of order 2(G continuity) and preserves the local convexity of the data. A method for interactively modifying such curves, while maintaining t...
متن کاملShape Preserving Interpolation Using C2 Rational Cubic Spline
Abstract: This study proposes new C rational cubic spline interpolant of the form cubic/quadratic with three shape parameters to preserves the geometric properties of the given data sets. Sufficient conditions for the positivity and data constrained modeling of the rational interpolant are derived on one parameter while the remaining two parameters can further be utilized to change and modify t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific and Statistical Computing
سال: 1985
ISSN: 0196-5204,2168-3417
DOI: 10.1137/0906065